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Isolation of an aerobic sulfur oxidizer from the
SUP05/Arctic96BD-19 clade

Katharine T Marshall and Robert M Morris
School of Oceanography, University of Washington, Seattle, WA, USA

Bacteria from the uncultured SUP05/Arctic96BD-19 clade of gamma proteobacterial sulfur oxidizers
(GSOs) have the genetic potential to oxidize reduced sulfur and fix carbon in the tissues of clams
and mussels, in oxygen minimum zones and throughout the deep ocean (4200 m). Here, we report
isolation of the first cultured representative from this GSO clade. Closely related cultures were
obtained from surface waters in Puget Sound and from the deep chlorophyll maximum in the North
Pacific gyre. Pure cultures grow aerobically on natural seawater media, oxidize sulfur, and reach
higher final cell densities when glucose and thiosulfate are added to the media. This suggests that
aerobic sulfur oxidation enhances organic carbon utilization in the oceans. The first isolate from the
SUP05/Arctic96BD-19 clade was given the provisional taxonomic assignment ‘Candidatus:
Thioglobus singularis’, alluding to the clade’s known role in sulfur oxidation and the isolate’s
planktonic lifestyle.
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Introduction

Marine sulfur-oxidizing bacteria thrive in low-
oxygen environments. They have critical roles in
the production of organic matter using energy
derived from hydrogen sulfide that is produced by
sulfate-reducing bacteria or leached from the ocean
crust at high temperatures (Sievert et al., 2007). The
reduced sulfur in hydrogen sulfide has an oxidation
state of � 2 and is available as an energy source for
anaerobic bacteria that oxidize sulfide by reducing
nitrate to nitrogen gas, nitrous oxide or ammonia.
Less is known about sulfur oxidation in oxygenated
marine waters. There were hints in the 1970s that
this was an important process. Tuttle and Jannasch
(1976, 1977) identified bacteria capable of oxidizing
thiosulfate in diverse inshore and offshore waters
and demonstrated the potential for thiosulfate
oxidation to enhance carbon fixation and glucose
utilization. More recently, Swan et al. (2011)
identified genes for sulfur oxidation, carbon fixation
and organic matter transport in the SUP05/Arc-
tic96BD-19 clade of gamma proteobacterial sulfur
oxidizers (GSOs) from oxygenated waters in the dark
ocean.

The SUP05/Arctic96BD-19 clade of marine GSOs
is comprised of symbiotic and planktonic

representatives from the ‘Basal’ group of gamma
proteobacteria, which contains the most ancient and
highly diverged lineages of gamma proteobacteria
(Williams et al., 2010). Here, we report isolation and
thiosulfate enhanced heterotrophic growth of the
first pure culture representative from the SUP05/
Arctic96BD-19 clade of GSOs (Supplementary
Methods). Several planktonic strains were cultured
from surface waters in Puget Sound in November
2009 (n¼ 3) and from the deep chlorophyll max-
imum in the North Pacific gyre in 2011 (n¼ 5;
Supplemental Table 1). The presence of viable cells
at diverse sites in the North Pacific suggests that
active members of this clade are widely distributed
in the ocean surface layer. A representative strain
was revived and purity was verified by observing a
single 16S rRNA gene fragment in successive
cultures and imaging cells with an isolate-specific
fluorescence in situ hybridization probe
(Supplementary Figure 1).

Results and discussion

Cultured SUP05/Arctic96BD-19 cells are extremely
small and produce extracellular globules (Figure 1).
The potential for sulfur oxidation was confirmed by
identifying sulfur (S1) in the extracellular globules
using scanning transmission electron microscopy
(Figure 1a) combined with energy-dispersive X-ray
spectroscopy (Figures 1b and c). These data support
the genomic findings of Walsh et al. (2009), which
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suggested that members of this clade have the
capacity to oxidize and store S1 due to an incom-
plete Sox pathway. Suspected roles in marine
carbon and sulfur cycles were further evaluated
using previously published PCR primers or new
primers targeting genes involved in carbon fixation
and sulfur oxidation (Blazejak et al., 2006; Swan
et al., 2011). Of the primer pairs tried, only the
dissimilatory aprA gene was identified (Hipp et al.,
1997; Kelly et al., 1997; Friedrich et al., 2005;
Blazejak et al., 2006). The inability to amplify
carbon fixation genes using degenerate primers
suggests that cultured GSOs are significantly
diverged from known GSOs that occupy anoxic
zones and the deep ocean (Walsh et al., 2009; Swan
et al., 2011) or that they get all of their carbon from
organic compounds.

Sulfur-oxidizing bacteria capable of heterotrophy
are well known. They are found in diverse lineages,
including alpha and gamma proteobacteria and
the Cytophaga-Flavobacterium-Bacteroides group
(Teske et al., 2000) and some marine Firmicutes.
The gamma proteobacteria include Pseudomonads,
Pseudoalteromonas and Halomonas-Deleya (Tuttle
et al., 1974; Teske et al., 2000). These lineages (along
with epsilon proteobacteria) are common at hydro-
thermal vents and at oxic/anoxic interfaces, where
reduced sulfur compounds are used to produce
energy (Tuttle et al., 1974; Ruby et al., 1981; Durand
et al., 1994; Teske et al., 2000; Sorokin, 2003;
Podgorsek et al., 2004). Sulfur oxidation enables
these bacteria to use more organic carbon for
biosynthesis and less for respiration, giving them
the ability to compete in a wide range of marine
habitats (Teske et al., 2000; Podgorsek et al., 2004).

The marine sulfate reservoir has increased over
the last 0.5–2.5 billion years, to its current concen-
tration of 28 mM (Canfield et al., 2000). Relative to
sulfate, there is little to no accumulation of the
inorganic sulfur cycle intermediates thiosulfate and
tetrathionate, which suggests that ubiquitous sulfur-
oxidizing marine bacteria oxidize these compounds
in seawater. We evaluated thiosulfate as a potential
energy source for heterotrophic growth on glucose
(Supplementary Methods). Thiosulfate is ubiquitous

at low concentrations in seawater (o5mM) and is
relatively stable in the presence of oxygen (Hayes
et al., 2006). Thiosulfate enhanced heterotrophic
glucose utilization (Figure 2). Growth rates and
final cell densities increased when glucose alone
was added to the media and were highest when
both glucose and thiosulfate were added to the
media (Figures 2a and b, respectively). It is unlikely
that this is due to co-limitation of carbon and
sulfur because increasing concentrations of glucose
alone increased cell densities. Cell densities at
each concentration of glucose also increased
when thiosulfate was also added to the media,
and sulfur globules are only produced by sulfur-
oxidizing organisms. Combined, these data suggest
that energy derived from sulfur oxidation can
enhance organic carbon turnover in the oxygenated
ocean.

Conclusion

We propose the provisional taxonomic assignment
‘Candidatus: Thioglobus singularis’, alluding to the
clade’s known role in sulfur oxidation and the
Isolate’s planktonic lifestyle.

Thioglobus gen. nov.
Thioglobus singularis sp. nov.
Etymology. thios (Gr. noun): sulfur, globus

(L. masc. noun): ball, sphere, globe. Singularis
(L. adj.): alone, singular. The Genus name alludes
to the clade’s ability to oxidize sulfur and to the
sulfur globules found on the outside of the cells.
The species name alludes to the fact that this is
a free-living member of the clade, rather than a
symbiont.

Locality: surface waters in Puget Sound.
Diagnosis: a small mesophilic sulfur oxidizer from

the gamma proteobacteria.

Accession numbers deposited in public databases
Gene sequences were assigned the following NCBI
accession numbers; Puget Sound cultures, 16S
rRNA genes (JQ254014–JQ254058); North Pacific

500nm

S

Cu

Cu

Ca

Ca

KClSi
Mg

Cu
Cu

C
O

Energy (Kev)
C

ou
nt

s

2 104 6 8

100

200

300

400

500

Cu
CuCl Ca

Cu
O
C

B

C

Figure 1 Image of Candidatus Thioglobus singularis and evidence of sulfur globules determined by scanning transmission electron
microscopy combined with energy dispersive X-ray spectroscopy (STEM–EDX). (a) STEM image and (b and c) EDX profiles. White
extracellular globules contain sulfur (b) that was not detected in parts of the cell with no globule (c). Samples were analyzed on a copper
(Cu) grid.
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gyre cultures, 16S rRNA genes (JQ253970–
JQ254013); SUP05/Arctic96BD-19 isolate, Puget
Sound isolate 16S rRNA gene (JN003574); SUP05/
Arctic96BD-19 isolate, North Pacific gyre isolate 16S
rRNA gene (JQ253969) and Puget Sound isolate
aprA gene (JQ253968). Cultures will be provided
upon request.
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Figure 2 Growth rates and cell densities of Candidatus Thioglo-
bus singularis. All experimental treatments were conducted in six
replicate cultures and growth was plotted following initial
detection (104 cells ml�1). (a) Growth rates with glucose and
glucose plus thiosulfate added to the media. (b) Final cell
densities with glucose and glucose plus thiosulfate added to the
media. Media was amended with 1 mM, 10mM or 100mM glucose
and each concentration of glucose plus 1 mM thiosulfate.
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